Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study investigates the complementary effects of side and corner modification strategies for the aerodynamic performance of tall buildings. A total of 81 doubly symmetric models were examined. High-frequency force balance (HFFB) wind tunnel testing was conducted at the University of Florida’s (UF) boundary layer wind tunnel (BLWT), an NSF-sponsored Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility. The 81 models were examined under two approach flow conditions, which are suburban and open terrains. For each flow condition, the models were tested under 10 different wind angles from 0° to 45°. The base responses were recorded using a 6-axis load cell. A total of 1620 tests (81 models × 2 flow conditions × 10 wind angles) were performed in the BLWT at UF. Details are provided in the report document.more » « less
-
The impact of climate change and global warming makes it imperative to seek sustainable solutions for the built environment. To facilitate the design of future sustainable buildings, wind tunnel tests are conducted in this study to investigate the flow characteristics and wind energy potential over a flat building roof with different edge configurations. Specifically, this study addresses the effect of parapet walls and roof edge-mounted solar panels on the wind flow over a flat-roof tall building. The results show that parapet walls generally slow down the wind speed and increase turbulence intensity as well as skewness angle, which compromises the efficiency of traditional turbine-based wind energy harvesting. On the other hand, the presence of solar panels on the roof edge (or on the top of the parapet wall) further alters flow separation and has the potential to enhance wind energy harvesting over the roof, especially for the solar panel inclined at 30°. In addition to providing valuable data for validating computational fluid dynamics (CFD) simulations, this study could also help to guide the design of wind energy harvesting devices on the building roof and explore the promising synergy with solar panels.more » « lessFree, publicly-accessible full text available November 1, 2025
-
This study proposes a surrogate-based cyber-physical aerodynamic shape optimization (SB-CP-ASO) approach for high-rise buildings under wind loading. Three components are developed in the SB-CP-ASO procedure: (1) an adaptive subtractive manufacturing technique, (2) a high-throughput wind tunnel testing procedure, and (3) a flexible infilling strategy. The downtime of the procedure is minimized through a parallel manufacturing and testing (llM&T) technique. An unexplored double-section setback strategy with various cross-sections and transitions positions is used to demonstrate the performance of the proposed procedure. A total of 173 physical specimens were evaluated to reach the optimization convergence within the reserved testing window. Further analysis of promising shapes considering multiple design wind speeds is suggested to achieve target performance objectives at various hazard levels. Practical information on setback and cross-section modification strategies is discussed based on the optimization results. In comparison with a square benchmark model, the roof drifts for promising candidates with similar building volumes are reduced by more than 70% at wind speeds higher than 50 m/s. This procedure is expected to provide an efficient platform between owners, architects, and structural engineers to identify ideal candidates within a defined design space for real-world applications of high-rise buildings.more » « less
-
This study explores the complementary effects of side and corner modification on the aerodynamic behavior for high-rise buildings across representative design wind speeds. Twelve doubly-symmetric prismatic models were examined using high-frequency force balance (HFFB) wind tunnel testing at the University of Florida. The effectiveness of the aerodynamic strategies was quantified using roof drift and roof acceleration under different design wind speeds covering serviceability and survivability. The results show that both corner and side modifications can achieve promising aerodynamic performance under high design wind speeds. However, the effectiveness of the aerodynamic strategies is significantly reduced under low design wind speeds. With a corner modification strategy, the vortex shedding frequency is increased, leading to worse across-wind response at lower design wind speeds when compared to the square benchmark model. To address this issue, side modifications (i.e., side protrusions) can be used to preserve the vortex shedding frequency and achieve competitive aerodynamic performance while simultaneously maintaining the floor area and geometry. This research explores new aerodynamic modification options for owners, architects, and structural engineers with the aim of better aerodynamic performance for high-rise buildings without compromising other design objectives.more » « less
An official website of the United States government
